Unusual Facts about Aquatic Invertebrates


horseshoe crab
Knowing where to start and stop when it comes to writing about invertebrates is a real problem – any single group could keep one occupied for a lifetime. Today I’d like to highlight some interesting facts concerning a few commonly kept types and their relatives. I’ll add to this from time to time.

General
Invertebrates (animals without backbones) account for approximately 97% of the world’s animal species, yet we have no idea of their total numbers. The smallest are invisible to the naked eye while the largest, giant squid, may exceed 60 feet in length.

Nearly every injectable drug manufactured in the USA is tested for bacterial contamination with a chemical extracted from horseshoe crab blood (synthetics do not work as well). Several states are restricting the collection of these animals (often used as fertilizer!) and requiring that they be released after blood specimens are taken.

Invertebrates have colonized every habitat imaginable, from freezing Antarctic seas to the boiling hot water of geysers. The sponges, crabs, tubeworms and others living near deep sea vents form the only animal community that does not rely upon photosynthesis as the basis of the food chain (bacteria that consume methane function as “plants”).

Despite being a creature of legend for centuries, the giant squid, Architeuthis sp., was not captured on film until 2004. Two years later, the same Japanese scientists that filmed the animal caught a specimen on a fishing line, thus giving the world its first view of a living giant squid.

Eating and Being Eaten
Despite radically different appearances, jellyfishes, sea anemones and corals are closely related (Phylum Cnideria). All gather food and excrete wastes through a common opening, and overcome their prey with stinging cells.

Jellyfish, although comprised largely (95%) of water, are able to snare prey as large as small fishes. Surprisingly, they form the bulk of the diet of many huge sea creatures, including the world’s biggest turtle, the leatherback.

The dried krill (shrimp-like creatures of the Class Brachiopoda) that you may use as fish food form the basis of the food chain in most of the world’s oceans. Also, a number of surprisingly large creatures, including whales, manta rays and basking sharks, rely upon krill as their primary diet, consuming billions each day.

Although viewed by most as sluggish creatures, many of the world’s 70,000+ species of snails and slugs (Phylum Mollusca) are quite effective predators. Various types pry open or drill through clam shells and cone snails impale fish by shooting out barbed tongues. Certain sea slugs consume anemones and incorporate the stinging cells into their own gill tufts.

Reproduction
Australia’s Great Barrier Reef, the world’s largest, is 1,250 miles long. Somehow, its untold billions of individual coral animals synchronize reproduction so that the sperm and eggs of all are released into the sea at the same time.

Banded coral shrimps, Stenopus hispidus, form long-term pair bonds, and males have been observed to share food with gravid (pregnant) females. The eggs, which are glued to the females’ swimmerets (feathery structures below her abdomen), are aerated and protected by her. Upon hatching, howeRed Reef Starfishver, the young may be consumed by both parents!

Surviving
Sea cucumbers make interesting if occasionally unsettling aquarium inhabitants – when disturbed, they discharge their stomachs through the anus! Amazingly, these sea star relatives can regenerate the discarded stomach.

The unique tube feet of sea stars (Phylum Echinodermata) function in locomotion, respiration and as sensory organs. Water-filled canals linking the feet can, via a series of valves, build up enough pressure to enable sea stars to pry open clam shells (try that with your hands!).

The anemone hermit crab, Parurus prideauxi, places a stinging sea anemone on its shell as protection and camouflage and re-locates it when changing shells. The anemone, in turn, gets a safe anchoring place and, perhaps, access to leftovers from the crab’s meals.

Using Invertebrates – Now and Then
Over 10,000 species of sponges (Phylum Porifora) inhabit both fresh and salt water. Several types have been collected from the Mediterranean Sea since ancient times. After drying in the sun, their fibrous structural tissue (spongin) made an excellent bath sponge.

Horseshoe crabs (Phylum Chelicerata) are among the world’s most ancient creatures and have remained relatively unchanged for over 300 million years. Closely related to spiders and not crabs at all, small specimens make interesting additions to a marine aquarium.

And, Finally…An Odd Personal Tale
Octopuses (Class Cephalopoda) are the most intelligent of the invertebrates and make fascinating aquarium subjects. They are also quite well-sighted – one I kept would, according to my grandmother, “stare” at her while she worked in the kitchen. Not wishing to upset my beloved pet, she covered its tank when preparing octopus for dinner!

Well, only a few billion more facts to go! I’ll continue next week, and periodically after that. As there are so many possibilities, I would greatly appreciate your suggestions concerning invertebrate-oriented subjects that you may wish to learn more about. Thanks, until next time, Frank.

You can learn a great deal about invertebrate biology at the web site of the Australian Museum:
http://www.amonline.net.au/invertebrates/ara/index.htm

 

Mantis Shrimp (Order: Stomatopoda) – Breaking Research and Care in Captivity

Welcome back Frank Indiviglio with another cool article.
An Introduction to Mantis Shrimp
Mantis shrimp are among the most interesting crustaceans that one might keep in a marine aquarium. Longevities in excess of 20 years are known, and many types form lifelong pair bonds. Their social interactions are incredibly complex – in some species the male hunts for the female while she guards the eggs, while in others two clutches of eggs are laid, each guarded by one parent.

Only distantly related to shrimp, these unique, aggressive predators are actually classified within their own order, Stomatopoda. Over 400 species are known, mostly from the Indian and South Pacific Oceans. Hobbyists are often surprised to learn that one species, the 10 inch long Squilla empusa, ranges along our Atlantic Coast is for north as Cape Cod.

A flurry of new research articles on these fascinating creatures has been published recently, and it turns out that they are even more unusual than we might have suspected. I’d like to summarize some of this new information here — in my next article, I’ll write about caring for mantis shrimp in captivity.

A New and Unique Visual System
Research completed at the University of Queensland, Australia, in March of this year has demonstrated that mantis shrimp have a vision system previously unknown in any other type of animal. Utilizing precisely tilted filters in their eyes, mantis shrimp are able to perceive circular polarized light (CPL) by converted it to a linear form. CPL spirals to the left or right, and appears only as “haze” to us and other creatures (hence the need for polarized sunglasses). The filter within the mantis shrimps’ eyes functions in a similar manner to those used in certain photographic processes – only they beat us to it by about 400 million years!

CPL is reflected by male mantis shrimps’ exoskeletons, leading researchers to believe that it is used for sexual signaling. Furthermore – squid, a major mantis shrimp predator, can detect linear polarized light but not CPL. The use of CPL may, therefore, represent an ingenious strategy by which the mantis shrimp can communicate without drawing the attention of their enemies.

The World’s Most Complex Eyes
Further research in May of this year revealed that mantis shrimp possess the Animal Kingdom’s most complex eyes. Their eyes contain ten pigments sensitive to different light wavelengths, as opposed to our own three pigments. In addition to detecting CPL, mantis shrimp can also see colors ranging from ultraviolet through infrared – far more than any other creature.

Although we have yet to understand all the reasons for the evolution of such a remarkable visual system, we have some hints. Certain of the mantis shrimps’ prey, such as sand shrimp, are transparent and very difficult to see underwater. However, these shrimp are full of sugars that reflect polarized light – making them easy targets for the mantis shrimp. As if all this were not enough, mantis shrimp can also rotate each eye independently of the other, allowing for a very wide circle of vision.

Splitting Thumbs and Shattering Glass
Of more immediate concern to marine aquarists is a recent study demonstrating that a common pet trade species, the peacock mantis shrimp, can extend its hard, club-shaped front legs at speeds of over 75 feet per second. This is the fastest kick known, and explains the why we sometimes find aquariums housing mantis shrimp shattered, and a flood on the floor – the odd creatures actually generate enough force to break glass! In fact, so much pressure is exerted that the exoskeleton at the back of the leg actually wears away over time, but is replaced when the mantis shrimp molts.

This mighty thrust is made possible by a unique hinge in the leg, and was analyzed after being recorded by a camera capable of operating at 100,000 frames per second. The deadly front legs allow mantis shrimp to crack the shells of the snails and crabs upon which they feed, and to defend themselves — indeed, divers long ago christened these colorful terrors “Thumb Splitters”.

Communicating via Florescence
Although many marine creatures fluoresce (absorb one color and emit it as another), mantis shrimp are the only ones known to use fluorescence as a means of communication. This month (May, 2008) researchers at the University of North Carolina demonstrated that the bright yellow spots of the species Lysiosquillina glabriuscula were visible even at depths of over 130 feet, allowing the animals to signal each other despite the dim blue light (which would otherwise render the yellow color indistinct).

Last but not least (“last” for now, I’m sure these oddballs are hiding other secrets!) – certain species of mantis shrimp cover ground by curling into a ball and rolling downhill.

On to captive care next time – until then, please share your own observations and questions. Thanks, Frank.

A video showing just how well a pugnacious mantis shrimp can use its kicking ability is posted at:
http://www.youtube.com/watch?v=Tt55yPxTxyA&feature=related

Great article Frank! Interesting take on what many consider a common aquarium pest.
Until next time,
Dave

The Use of Light Rails and Moving Aquarium Lighting in Reef Aquariums

The use of light rails, or mechanical light moving devices, has been used for many years in the horticultural industry. Now this technology is available for the aquarium hobby. By moving your light source, you can maximize the potential of an individual light fixture, by covering far more area with maximum light output vs. a stationary light source. Light energy, commonly measured in lumens, dissipates with distance from the light source. The only way to increase coverage area of a fixed light source is to move it farther away from its target area. This may cover a greater area, but will reduce the light energy that reaches the target. The other solution is to use more light fixtures, with more cost, more heat, and increased operating expense. Another problem with stationary light sources are the shadows that are created in the illuminated area, which can create unnatural growth patterns. In nature, as we all know, the sun is not in a fixed position in the sky. Areas that are shaded during parts of the day, may receive light during other times. Using a light rail mimics this natural occurrence, by changing the angle at which the light reaches its target. Areas that may not get any light with a fixed position bulb, will get light when using a moving light source.
Aquariums that require high output lighting, typically metal halide lighting, pose some problems for aquarists. These lights are very expensive to purchase, create a great deal of heat, and are expensive to operate, and replace. Using a moving light source on your reef or live plant aquarium can help solve some of these problems, you can keep your light closer to the water surface, and maximize the light energy that reaches into the aquarium. Another benefit to using a moving light system is the number of light fixtures needed to cover a given area. A six foot long aquarium can be sufficiently covered by two moving metal halide light fixtures, where it would require at least three were they stationary. Less light fixtures means less heat, less operating cost, and fewer bulbs to replace annually and more natural growth patterns.
Using light rails are not going to be practical for all applications. Smaller tanks are not practical to use these systems on, and you need to have the space to install the equipment. Applications such as “in wall” aquariums that have all the equipment hidden from view, and especially large aquariums or coral propagation systems will be able to take better advantage of what the use of light rails has to offer.
Beyond the cost and functional benefits of a light rail system, they are just plain cool to watch. The moving light source over an aquarium creates an ever changing mix of shadows and colors in your aquarium as the angles of light change on the livestock and objects in the aquarium. A moving light system is definitely a gadget geeks kind of device.
Until next blog,
Dave

News and New Research on Seahorses and Seadragons (Family Syngnathidae)

Seahorses have much to attract aquarists – armor plated and prehensile tailed, and with independently-moving eyes and wing-like fins, they can also change color as well as grow and discard filamentous appendages. And, of course, the males become “pregnant”.

My first contact with seahorses came in the mid 1960’s when my grandfather, long in awe of these unusual fishes, mail-ordered a group of dwarf seahorses, Hippocampus zosterae, from a dealer in Florida. The shipment included several males carrying eggs, and I was hooked – so much so that I wound up writing a book on seahorses.

Texas A&M researchers are now learning the male seahorse’s pouch is far more than a mere container for eggs, and are trying to discover just how such a unique organ managed to evolve. Tissue from within the pouch actually grows around the eggs and functions in a similar manner to a mammalian placenta. Through it the seahorse father is able to keep blood flowing around the eggs, and to provide them with oxygen and nutrition. Amazingly, he also makes minute adjustments to the salinity of the water within his pouch, gradually increasing it as the embryos’ needs change. By hatching time, the salinity of the pouch water matches precisely the salinity of the surrounding ocean.

The male seahorse fertilizes the eggs once they have been deposited into his pouch by the female. From that point on, the reproductive roles of the sexes are reversed. The researchers at Texas A&M are also looking into the effect this has had on mate selection and other aspects of seahorse reproductive behavior. In certain species of pipefish (close relatives of the seahorses) females have the bright coloration usually associated with male fishes, and they compete for access to the egg-incubating males. Seahorses are, as far as we know, monogamous. They form long-term pair bonds which are reinforced, in many species, with daily “greeting” rituals (the pair clasps tails, swims together, etc.), but much about how role-reversal has affected mate selection is unknown.

In other related news, the Georgia Aquarium has announced that one of its male weedy seadragons is carrying eggs, only the third time such has been recorded in a US aquarium. Weedy seadragons, and the larger and even more flamboyantly decorated leafy seadragons, are close relatives of the seahorses and pipefishes and also exhibit similar reproductive strategies.

You can read more about the Georgia Aquarium’s seadragon breeding program and see a seadragon video at:
http://www.georgiaaquarium.org/exploreTheAquarium/webcam-seadragon.aspx.

Please also take a look at my seahorse book if you have a chance (see above) – I would greatly appreciate your feedback.

I’ll write more about keeping seahorses and their relatives in aquariums in the future. Until then, please forward your comments and questions.

Thanks, Frank.

Carnival fish part 2: The Betta

Crowntail Betta

Bettas
The Betta fish, Betta splendens, is another commonly found “prize fish” that you may have the pleasure of become the new owners of. Bettas are one of the most beautiful freshwater fishes that are available in the aquarium hobby; their striking color and ornate finnage are quite remarkable.
Bettas are often chosen as prizes because of their ease of care, and ability to do well in very small amounts of water. The Betta is native to areas of Thailand, where they are exposed to times extreme rainfall and drought, which during times of drought can result in little more than a puddle to live in. Unlike most fish, the Betta does not solely rely on oxygen from the water it resides in, it has the ability to breathe air. Bettas are members of a group of fishes called Labyrinth fishes. Labyrinth fishes have a specialized breathing organ, called the labyrinth, which allows them to breathe air at the waters surface, somewhat like a primitive lung. The ability to breathe air allows the Betta to survive in very warm water with little or no dissolved oxygen. This is how Bettas are able to cope with very small fish bowls, and is often how they are displayed and sold.
PLEASE do not use this as an excuse to keep a Betta in extremely small environments for extended periods: although they can survive in only a few ounces of water, they will not be happy and comfortable.
Bettas can be kept in unfiltered bowls, provided adequate water changes are maintained (at least 20% per week), and water quality is monitored. Larger aquariums of at least several gallons are preferred, the bigger the better. There are a number of small desktop aquariums that are ideal for Betta keeping.
There is another side of the Betta fishes heritage that there is much controversy surrounding. Another common name for the Betta, is the fighting fish, or Siamese fighting fish. This name comes from the aggressive nature that these fish have towards one another, especially two males. The Thai name for these fish is”pla-kat”, which means biting and tearing fish. When placed in the same tank, two male Betta fish will literally fight to the death. There is a whole world of fighting and gambling involving the Betta in other cultures. Fighting Bettas is not considered an appropriate practice in the hobby.
There are many commercially produced Betta foods, in pellet, flake and freeze dried forms. A good varied diet is best. Feed only as much as the fish will eat in a few minutes, take extra care not to overfeed, especially in unfiltered bowls. Bettas prefer warm water, 72-78 degrees, so avoid cool areas like window sills, and hallways when possible. Direct sunlight should also be avoided; this will lead to unwanted algae growth, and temperature fluctuations during the day. While you can not keep bettas together, they can be kept in peaceful community tanks, with other types of fish.
If you have any futher questions about bettas or other carnival fish, post them and I’ll be sure to answer.
Until next time,
Dave